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Abstract—This paper presents a statistical-mechanics-inspired
procedure for optimization of the sensor field configuration to
detect mobile targets. The key idea is to capture the low-
dimensional behavior of the sensor field configurations across the
Pareto front in a multiobjective scenario for optimal sensor de-
ployment, where the nondominated points are concentrated within
a small region of the large-dimensional decision space. The sensor
distribution is constructed using location-dependent energy-like
functions and intensive temperature-like parameters in the sense
of statistical mechanics. This low-dimensional representation is
shown to permit rapid optimization of the sensor field distribu-
tion on a high-fidelity simulation test bed of distributed sensor
networks.

Index Terms—Gibbs distribution, mobile target detection, opti-
mization of the sensor field configuration, sensor networks.

NOMENCLATURE

ek(i) Scalar energy corresponding to the kth intensive pa-
rameter and the ith state.

Ek Energy vector corresponding to the kth intensive
parameter.

fS Sensor density function.
fT Distribution of expected targets.
i Index for the state (i ∈ {1, 2, . . . , n}).
J Combined objective functional.
k Index for the intensive parameters (k∈{1, 2, . . . ,K}).
K Total number of intensive parameters.
kd Number of sensors confirming target detection.
n Number of states.
N Number of sensors.
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PD Probability of detection of a target by a single sensor
(target within distance Rd from the sensor).

PF Probability of a single sensor false alarm rate.
PFT Probability of a specific false track.
PFS Probability of a false search.
PST Probability of detection of a specific track.
PSS Probability of a successful search.
Rd Radius of detection of a sensor.
S Surveillance region.
Wi Gaussian-mixture weight corresponding to state i.
W Weights in vector form.
W∗(α) Optimal weights/distribution for a given α.
xi x-position of the Gaussian mean for state i.
yi y-position of the Gaussian mean for state i.
α Tradeoff variable between log(PSS) and log(PFS).
βk kth intensive parameter.
φΩT

Probability of finding sensors within the region
ΩT (x, y, θ).

λi ith largest eigenvalue of H .
η Threshold for approximation.
ΩT Pill-shaped region around a target.
σ Variance of each component in the Gaussian mixture.

I. INTRODUCTION

R ECENT advances in sensor technology and the develop-
ment of powerful mobile computational platforms have led

to the usage of distributed sensor networks for the tracking of
moving targets (e.g., undersea autonomous vehicles and wea-
pon systems) [1]–[3]. Typically, such sensor networks consist of
a large number (e.g., ≈100–1000) of inexpensive sensor nodes
that cover large surveillance regions. As an advantage of the par-
allel operations, distributed sensor networks have a larger cov-
erage than their conventional counterparts in terms of both area
and speed. In addition, distributed sensor networks are robust
to random variations in operating conditions and unexpected
failures that may happen during the course of operation [2].

Typically, in a sensor field, each sensor is designed with
a limited autonomous target detection capability to reduce
the sensor cost, and the information from multiple sensors is
combined to compensate for the limited coverage provided
by the individual sensors. This process of requiring multiple
sensor signals for a successful target detection is referred to as
track-before-detect [4], since a confident system-level detection
decision is not made until a set of multiple sensor detections

1083-4419/$26.00 © 2010 IEEE
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occur in a spatiotemporal pattern that is consistent with the ex-
pected target motion. Along this line, Wettergren [5] analyzed
the performance of the track-before-detect schemes for the
sensor networks. Furthermore, a method that is used to optimize
the sensor field configuration for an efficient target detection
was proposed using different performance metrics [6].

A particular problem of interest is that of the optimization
of the sensor field configuration for the purpose of target track
coverage. In contrast to point coverage that requires optimal
search solutions in finding stationary objects within the sur-
veillance region, target track coverage uses fixed sensors to
search for moving targets in the surveillance region. The sensor
density that is required for target track coverage is lower than
that for point coverage as the moving targets leave a larger
footprint over time, and therefore, they may be detected by
multiple sensors. Stone [7] presented a survey of optimal target
search techniques, where only the independent noncollabora-
tive sensors were used. Meguerdichian et al. [8] examined the
performance of an ad-hoc network to address the problem of
sensor allocation to achieve the target tracking capabilities over
the region of interest. Ram et al. [9] analyzed the track-coverage
property of a random sensor network and provided asymptotic
results for its performance. Cloqueur et al. [10] incorporated a
deployment cost to choose the number of sensors in a region.
Track-coverage assessment of a given configuration was ad-
dressed by Baumgartner and Ferrari [11] for the reorganization
of the sensor field to achieve the maximum coverage. The track-
before-detect-based optimal control of sensor reorganization
was analyzed by Baumgartner et al. [12]. Recently, the concepts
of statistical mechanics [13] have been extended to various
fields such as statistical learning [14], communication networks
[15], autonomous systems [16], [17], swarm control [18], [19],
and optimization [20], [21].

Optimal configurations work well for problems of limited
duration. However, for long-term operation, the tradeoff be-
tween detection and false alarm performance may change
throughout the deployment. In such cases, the reorganization
of these fields is important for persistent operation to accom-
modate changes in the operational intent. The reorganization
of the sensor field requires reoptimization to determine its new
configuration. However, in computation and communication
constrained environments, computationally efficient methods
for rapid optimization are required. In this regard, this paper
presents a statistical-mechanics-inspired method for the rapid
optimization of the sensor field configuration that provides a
set point for the new configuration. A major contribution of
this paper is the development of an analytical tool to facilitate
the rapid multiobjective optimization of the sensor placement
for the detection of mobile targets. In this regard, the large-
dimensional space of the sensor field configurations is ex-
pressed as a function of a low-dimensional set of intensive
parameters (e.g., temperature, pressure, and chemical poten-
tial in statistical mechanics). Consequently, the optimization
process becomes rapid because the search for the optimal con-
figuration is performed in a significantly reduced dimensional
space. The algorithms for the optimization of the sensor field
configuration have been validated on a simulation test bed of
distributed sensor networks.

Fig. 1. Detection region ΩT (x, y, θ) around a target track originating at
(x, y) and heading along a direction θ for a time interval δt.

This paper is organized in six sections (including the current
section) and an Appendix. Section II describes the detection
model that is used to obtain the probabilities of the success-
ful and false search. Section III poses the problem of rapid
optimization based on the concepts of statistical mechanics.
Section IV formulates the optimal algorithms for the sensor
field configuration in the setting of the Gibbs distribution, and
it is supported by the Appendix. Pertinent results are presented
in Section V. This paper is concluded in Section VI, with
recommendations for future research.

II. PERFORMANCE MODEL FOR TARGET DETECTION

This section describes a model [5] for the target detection
performance of a typical distributed sensor network. The global
performance is characterized by the following two measures:

1) the probability of a successful search (PSS), which is
defined by the multisensor target detection;

2) the probability of a false search (PFS), which is defined
by the multisensor false alarms.

While the details of computing the aforementioned parame-
ters in a sensor network are reported in the previous publi-
cation [5], the underlying model is briefly described here for
completeness.

A collection of N homogenous sensors is deployed in a given
surveillance region S, where it may be necessary to update
the original configuration in real time for the improvement
of the detection performance. The sensor field is assumed to
have the following characteristics: 1) each sensor has a sensing
radius Rd, within which it may successfully detect a mobile
target with a probability PD, and 2) each sensor has a specified
false alarm rate (PF ), i.e., the probability of false alarm per
unit time. The probability of a false search (PFS) is reduced
by the requirement of multiple detections by different sensors,
occurring in a sequence that is spatiotemporally consistent
with the expected target motion before confirming a target. In
accordance with the track-before-detect paradigm [4], a moving
target is detected if the kd (typically kd = 3 or 4) sensors detect
the target within a specified time interval δt and a spatial region,
as shown in Fig. 1. This time interval δt is chosen such that
the expected target velocity is approximately constant over the
interval. Such an approximation is consistent with the Markov
modeling assumptions of the moving targets that are commonly
used in the target tracking community [22].
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Fig. 1 shows a target track originating at location (x, y) and
moving at a heading θ over a time interval δt. The region
ΩT (x, y, θ) around this target track corresponds to the region of
target detectability over time interval δt. This region represents
a subset of the space in which the sensors have an opportunity
to detect the specified target track within the sensing radius Rd.

Let the sensor distribution be denoted with fS(x, y). Then,
the probability of finding a sensor in a region ΩT is given by

φΩT
=

∫
(x′,y′)∈ΩT

fS(x′, y′)dx′dy′. (1)

Furthermore, the probability of a single sensor detecting the
target is given by PDφΩT

. For a successful target detection, it is
required that at least kd out of N sensors independently detects
the target within the region ΩT (each with equal probability
PDφΩT

). This is modeled by the Poisson distribution [2], [5]
for a large numbers of sensors N and is given as

PST (kd,ΩT ) = 1 − exp(−NPDφΩT
)

kd−1∑
m=0

(NPDφΩT
)m

m!
(2)

where PST (kd,ΩT ) is the probability of detecting a single
target that moved along the target path in the region ΩT .

Let the target track distribution be denoted by a joint prob-
ability density function fT (x, y, θ), i.e., the likelihood of a
target being present at location (x, y), with heading θ. Thus, the
overall probability of a successful search (PSS) that is relative
to this distribution of targets is given by

PSS(kd) =

2π∫
0

∫
x,y∈S

PST (kd,ΩT )fT dxdydθ. (3)

Along similar lines, the probability of a false search (PFS)
is defined as the probability that at least kd sensor false alarms
occur, which are kinematically consistent with a potential target
motion. The probability of a single sensor raising a false alarm
in a time interval δt is PF δt for the small values of the false
alarm rate PF . Similar to (2), the probability of a specific false
track in the region ΩT , denoted as PFT (kd,ΩT ), is given by

PFT (kd,ΩT ) = 1 − exp(−NPF δtφΩT
)

×
kd−1∑
m=0

(NPF δtφΩT
)m

m!
. (4)

The probabilities of false track events, which are independent
for the nonoverlapping regions ΩT , are assumed to be Poisson.
Thus, the probability of zero false tracks is given by

Pr{0} = exp

⎛⎝− 1
AΩT

π∫
0

∫
x,y∈S

PFT (kd,ΩT )dxdydθ

⎞⎠ (5)

where AΩT
is the area of the region ΩT . Thus, the probability

of a false search PFS is given by

PFS(kd) = 1 − Pr{0}. (6)

Fig. 2. Partition of the surveillance region and the associated parameters.

The exact procedure for the evaluation of the performance
measures, i.e., the probability of a successful search (PSS) and
the probability of a false search (PFS), is given in [5]. The
procedure for determining the optimum configuration of the
sensor field for detecting the moving targets is described in [6].

III. OPTIMIZATION PROBLEM FOR SENSOR PLACEMENT

As described in the previous section, the performance of
a sensor field is measured in terms of the probability of the
detection of the moving targets and the associated probability of
false alarms. The false alarm objective is included to facilitate
the avoidance of sensor clumping, which may cause confusion
in a track-before-detect construct. Additional parameters such
as tracking accuracy and detection time may also be used in the
objective functional. The optimization of the sensor distribution
using multiple conflicting objectives leads to a Pareto optimal
set, also known as the nondominated set [23] of the sensor field
configurations.1

Based on the aforementioned performance measures [see (3)
and (6)], the objective is to construct a set of nondominated
sensor distributions fS(x, y). In this regard, these distributions
are modeled as a mixture of multivariate Gaussian density
functions, given as

fS(x, y) =
1

2πσ2

n∑
i=1

Wi exp

[
−

(
(x − xi)2 + (y − yi)2

)
2σ2

]
(7)

where n is the number of components in the Gaussian mixture
and W1,W2, . . . ,Wn are the mixture weights. The Gaussian
mixture centers (xi, yi) are chosen a priori to lie on a square
grid on the search space S consisting of n cells, as shown
in Fig. 2. Each grid cell “i” is assigned a weight Wi. The
parameter σ is chosen by taking into account the grid spac-
ing [6]. The weights are normalized to yield a probability
mass function, i.e.,

∑n
i=1 Wi = 1. The sensor distribution

fS(x, y) can be obtained by computing the weight vector W =
[W1,W2, . . . ,Wn]. Therefore, a point in the Pareto set repre-
sents a particular choice of the weight vector W as used in (7).

1The configurations in the Pareto optimal set are nondominated in the sense
that there is no configuration which is an improvement in every objective over
any Pareto configuration.
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Usually, the Pareto set is a very small subset of achievable
configurations. In other words, a vast majority of the sensor
field configurations belong to the dominated set. The total num-
ber of possible configurations exponentially increases with the
number of sensors, implying that the Pareto optimal set forms a
small fraction of the entire set of configurations. As a result,
most of the current Pareto optimization techniques [24] that
utilize the concepts of genetic algorithms or nonlinear program-
ming [23] to optimize the sensor field configuration may take
a long time to search the entire configuration space and may
still yield an approximate Pareto set. For example, traditional
normal boundary intersection (NBI)-based genetic algorithms,
such as the genetic-algorithm-based NBI (GANBI),2 [24] may
be used to obtain a set of sensor distributions that represent a
suboptimal Pareto set.

This paper utilizes the solutions obtained from GANBI to
create a model of the Pareto set that is dependent on a small
number of parameters. Consequently, the reduced dimension
of the search space enables rapid optimization using nonlinear
programming algorithms (e.g., sequential quadratic program-
ming (SQP) [23]) to obtain a close-to-optimal Pareto set which
is likely to be superior to that obtained from GANBI.

To define the objective space, this paper makes use of
two competing performance measures: 1) the probability of a
successful search PSS(W) and 2) the probability of a false
search PFS(W), where W denotes the weight vector that
parameterizes the sensor distribution fS(x, y) [see (7)]. The
other parameters, such as kd, N , and fT (x, y, θ), are assumed
to be implicitly present in the performance measures. Assuming
convexity, the Pareto front is parameterized by constructing a
maximization objective function J that is given by the follow-
ing weighted sum:

J(W, α) = α log [PSS(W)] + (1 − α) (− log [PFS(W)])

(8)

where α ∈ [0, 1], i.e., the Pareto front is generated by varying
α from zero to one. The Pareto front is a (generally convex)
curve in the log(PSS) versus log(PFS) space. In this space, for
a point on the Pareto front with slope m, the corresponding α =
(1/1 + m). An optimal sensor field configuration is chosen
from the Pareto set by assigning different weights to different
performance objectives [i.e., α in (8)]. Formally, the optimal
sensor distribution for a given value of α is given by

W∗(α) = arg max
W

J(W, α). (9)

In real-time operations, a supervisor may change the relative
weights of the individual objectives depending on the situation,
thereby selecting a different point on the Pareto set. Conse-
quently, a different sensor field configuration is generated.

Remark 3.1: The objective function J in (8) may be aug-
mented with additional performance measures, such as tracking

2GANBI produces a set of nondominated solutions in the multiobjective
space as an estimate of the Pareto front.

accuracy and detection time. However, with more than two
objective functions, α will become a vector instead of being
a scalar. Correspondingly, the dimension of the vector α will be
one less than the number of individual objectives, resulting in
a Pareto hypersurface. The rest of the analysis described in this
paper remains unchanged.

This paper utilizes the concepts of statistical mechanics in
constructing a reduced-order model of the Pareto set with
a small number of parameters. This model provides a more
tractable structure for rapid optimization using nonlinear pro-
gramming methods. Therefore, in addition to generating a
close-to-optimal Pareto front, this approach enables rapid es-
timation of the parameters for sensor field configuration when-
ever the relative weight α of the objectives is altered.

The underlying principle of statistical mechanics involves
the construction of the energy states, where the equilibrium
probability distribution is estimated by maximizing the entropy
of the system for a given macroscopic parameter (e.g., energy)
[13]. The distribution of the population among various energy
states, called as the generalized canonical distribution or the
Gibbs distribution [13], is given as

Pi =
exp [−βe(i)]∑n

j=1 exp [−βe(j)]
, i ∈ {1, 2, . . . , n} (10)

where e(i) is an extensive parameter that represents the energy
of a particle in state i and β is an intensive parameter that
represents the inverse temperature. In general, a system is
characterized by multiple intensive parameters [13]. In that
case, (10) is modified as

Pi =
exp

[
−

∑K
k=1 βkek(i)

]
∑n

j=1 exp
[
−

∑K
k=1 βkek(j)

] , ∈ {1, 2, . . . , n}

(11)

where βk, with k ∈ {1, 2, . . . ,K}, is the intensive parameters
and ek(i), with k ∈ {1, 2, . . . ,K}, is the extensive parameters
that represent the energies of the state i.

In this paper, the Gibbs distribution is used to construct a
model structure for the rapid optimization of the sensor field
configurations. The optimization procedure consists of two
phases: 1) (offline) training and 2) (online) operation. For a
sensor field, the search space S is partitioned into n cells to
form a grid, and each grid cell is defined as a state, as shown in
Fig. 2. In the training phase, the K energy parameters ek(i),
with k ∈ {1, 2, . . . ,K}, are computed for each state i (see
Section IV for details). Once computed, the energy parameters
are fixed for each state and are kept invariant in the operation
phase. The intensive parameters βk, with k ∈ {1, 2, . . . ,K},
do not depend on the state i. However, they may vary in the
operation phase. In the operation phase, moving to a different
operating point on the Pareto front corresponds to a change in
the intensive parameters while keeping the associated energies
ek(i) invariant. Since the intensive parameters are common to
all states, they serve as the control parameters for the optimiza-
tion of the sensor field configuration, which may be broadcasted
to the entire network for online operation [25].
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IV. GIBBS DISTRIBUTION FOR OPTIMIZING THE

SENSOR FIELD CONFIGURATION

This section describes a method that is used to model the
changes in the sensor distribution as the parameter α in (8)
varies in the interval [0, 1]. It is desirable to construct this
model of the Pareto set with as few parameters as possible in
order to facilitate the real-time adaptation for the sensor field
configuration. Any point on the convex Pareto front can be
represented as an optimal solution that maximizes J(W, α)
in (8) for some α ∈ [0, 1]. Therefore, a continuous one-to-one
mapping exists between the Pareto front and the set [0, 1].
As described in (7), the sensor distribution fS(x, y) is pa-
rameterized by the weights W1,W2, . . . ,Wn given to the n
components in the Gaussian mixture. Furthermore, each point
on the Pareto front corresponds to a certain weight vector
expressed as W∗(α) = [W ∗

1 (α) W ∗
2 (α) · · · W ∗

n(α) ].

A. Model Construction

The individual weights are modeled by the Gibbs distribu-
tion as

W ∗
i (α) Δ= exp

(
−

K∑
k=1

βk(α)ek(i) − A(α)

)
(12)

where the energy functions ek(i), with k ∈ {1, . . . , K} and
K ≤ n, are defined on states i ∈ {1, . . . , n} and A(α) is the
normalizing factor. Note that the intensive parameters βk, with
k ∈ {1, . . . , K}, depend on α but not on the state i, while the
extensive parameters ek, with k ∈ {1, . . . , K}, depend on the
state i but not on α. Taking the logarithm on both sides and
multiplying with the negative one, (12) yields

Gi(α) Δ= − log (W ∗
i (α)) =

K∑
k=1

βk(α)ek(i) + A(α) (13)

where βk(α) and A(α) depend on the parameter α. The term
A(α) that is chosen to normalize the distribution is analogous
to the free energy in the thermodynamic sense [13].

As stated earlier, the state-dependent ek(i)’s are invariant
along the Pareto front, while βk’s are invariant across all
states. The next task is to estimate the values of the state-
dependent ek’s in the sense of minimum variance. Since these
functions are defined over a discrete and finite domain, they

can be represented by the corresponding energy vectors: Ek Δ=
[ ek(1) ek(2) · · · ek(n) ]T ∀ k ∈ {1, . . . , K}. The follow-
ing constraints are imposed without loss of generality.

1) The Euclidean norm of the energy vector is set as
‖Ek‖2 = 1 ∀ k ∈ {1, . . . , K}. The scaling factor of the
energy vector is absorbed into βk.

2) Any constant added to the energy vectors is absorbed
into the bias function A(α), and it does not affect the
distribution. Hence, the sum of the elements of the energy
vector is constrained to be zero by subtracting the mean
of the energy from each element. Thus

n∑
i=1

ek(i) = 0 ∀k ∈ {1, . . . , K}. (14)

3) Given K linearly independent energy vectors E1, E2,
. . . , EK , it is possible to construct an orthogonal set
of K vectors that span the same space. In this set of
basis vectors, the coefficients βk(α) are calculated by an
appropriate transformation. Therefore, it is assumed that
the energy vectors are mutually orthogonal. Thus

(Ek1)T (Ek2) = δk1k2 k1, k2 ∈ {1, . . . , K} (15)

where δk1k2 is the Kronecker delta function.
Upon imposing the aforementioned constraints and summing

(13) over all n states, it follows that

n∑
i=1

Gi(α) =
K∑

k=1

βk(α)
n∑

i=1

ek(i) +
n∑

i=1

A(α) (16)

⇒A(α) =
1
n

n∑
i=1

Gi(α) by (14). (17)

By setting G̃i(α) Δ= Gi(α) − A(α), a vector is defined as

G̃(α) Δ=
[
G̃1(α) G̃2(α) · · · G̃n(α)

]T

.

The components of vector G̃(α) also sum up to zero, i.e.,
the vectors G̃(α) and E1, E2, . . . , EK lie in the same (n − 1)-
dimensional subspace of R

n.

B. Offline Estimation of the Energy Vectors

In the training phase, the energy vectors are estimated from
a collection of points in the Pareto set to represent the non-
dominated sensor field distributions. In this paper, these points
are generated by a genetic-algorithm-based multiobjective op-
timization algorithm (GANBI) [24].

Let the training data set consist of L samples, and let the
n-dimensional weight vectors that correspond to these sensor
distributions be given by W1,W2, . . . ,WL. For a reliable sta-
tistical analysis, L must be sufficiently larger than the number
of states n. Let Gl be a transformation of the weight vector Wl

such that

Gl Δ= − log(Wl), l ∈ {1, . . . , L}. (18)

As defined earlier, the vector G̃l is obtained as

G̃l Δ= Gl −
(

1
n

n∑
i=1

Gl
i

)
[1, 1, . . . , 1]Tn×1, l ∈ {1, . . . , L}.

(19)

The orthonormal vectors E1, E2, . . . , EK are estimated by
minimizing the sum of the squared distances between the
vectors G̃l and their projections onto the space spanned by
E1, E2, . . . , EK . To this end, a cost functional is defined as

L =
L∑

l=1

∥∥∥∥∥G̃l −
K∑

k=1

Ek
(
(Ek)T G̃l

)∥∥∥∥∥
2

(20)

where L is minimized by obtaining its vector derivatives with
respect to the energy vectors E1, E2, . . . , EK and by setting
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them to be equal to zero. The orthonormality constraints are in-
corporated by means of Lagrange multipliers (see the Appendix
for details). The energy vectors are obtained as the eigenvec-
tors of the self-adjoint and positive semidefinite matrix H =
(
∑L

l=1(G̃
l)(G̃l)T ) such that

HE = λE. (21)

The vectors E1, E2, . . . , EK obtained by the discrete
Karhunen–Loéve expansion [26] are real and mutually orthog-
onal. The eigenvalues are ordered as λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
The eigenvectors corresponding to the largest K eigenvalues,
where K ≤ n, are chosen such that the cumulative sum (η)
of the remaining (n − K) eigenvalues is bounded above by a
positive threshold ητ � 1

η
Δ=

∑n
i=K+1 λi∑n

i=1 λi
≤ ητ . (22)

As described earlier, the energy vectors corresponding to
each state form the local potentials, and they are identified
a priori in the (offline) training phase. The training data set of
the nondominated sensor distributions described by the weight
vectors Wl (l = 1, . . . , L) are obtained using the genetic al-
gorithms. This data set is suboptimal compared to the ideal
Pareto front. Although the values of βk, with k = 1, . . . , K,
may be found for each sensor distribution in the training set,
the weight vectors Wl (l = 1, . . . , L) are not labeled with the
corresponding values of α, making it impossible to obtain βk as
a function of α. This issue is addressed in the (online) operation
phase.

C. Online Operation

The probability of a sensor occupying a state i is governed
by a combination of global parameters βk’s and local energy
parameters ek(i)’s. Given the energy vectors, as obtained in
the training phase, the weight vector W depends on the values
of the intensive parameters βk, with k = 1, . . . ,K, and it is
given by

Wi =
exp

(
−

∑K
k=1 βkek(i)

)
∑n

j=1 exp
(
−

∑K
k=1 βkek(j)

) , i=1, . . . , n (23)

where K is much smaller than the number of states n. For
a given value of α, the objective functional J(α) [see (8)] is
constructed as a linear combination of the probabilities of the
successful and false searches. The aim here is to find the weight
vector W(α) that maximizes the objective J(α). However, the
weight vectors are functions of βk, with k = 1, . . . ,K, that
belong to an abstract K-dimensional space. The task of finding
the optimal weight vector W(α) is reduced to that of finding the
optimal parameters βk(α), which maximize J(α). Due to the
small dimensionality of the search space (i.e., the space of
βk’s), the SQP algorithm is suitable in computing βk(α). Thus,
the supervisory controller may choose an operating point in the
K-dimensional space of βk’s to achieve the global objectives
for a given α.

V. RESULTS AND DISCUSSION

This section presents the results generated by using the
multiple-intensive parameter Gibbs distribution to model the
Pareto front of the nondominated sensor field configurations.
The competing performance criteria in the Pareto front are the
probability of a successful search (PSS) and the probability of a
false search (PFS) for the moving targets. While the details are
reported in [6], a brief description for the evaluation of PSS and
PFS for a given sensor field configuration has been described
in Section II. In the test problem, the surveillance region is
divided into a 20 × 20 square lattice to yield n = 400 grid
cells. The sensor field configuration, expressed as a probability
density, is modeled by a Gaussian mixture centered at each
of the grid points [see (7)]. The distribution of the sensors
is completely parameterized by a 400-element weight vector
(i.e., n = 400), resulting in 399 independent parameters be-
cause of the constraint

∑400
i=1 Wi = 1. The global performance

parameters PSS and PFS have been evaluated based on the
following: 1) a uniform distribution of the target tracks, i.e.,
fT (x, y, θ) = (1/2πL2), and 2) a skewed distribution of the
target tracks fT (x, y, θ) = (1 + cos(θ)/2πL2) in the domain
of the L × L surveillance region. In these simulation scenarios,
the total number of sensors required to be placed is chosen to be
N = 60, with the cumulative point coverage of all the sensors
amounting to only 9% of the surveillance region. In accordance
with the track-before-detect strategy, the number of sensors kd

that must detect a target to confirm its presence is chosen as two
for the results that follow.

A GANBI code [24] has been adopted to solve the multi-
objective optimization problem and to obtain the approximate
Pareto front of sensor distributions, where 8 b are used to
represent each weight Wi in the genetic program [6]. With
a population size of 100, the genetic algorithm has been run
for 300 generations to obtain a good spread of points along
the Pareto front, where each point corresponds to a set of
400 weights that are used to describe the sensor distribution.
As with any genetic-algorithm-based approach, the generated
Pareto front is always approximate.

The algorithm presented in this paper extracts the low-
dimensional characteristics of the approximate Pareto front
in the space of the weights Wi and formulates a tractable
optimization problem with fewer parameters in order to refine
and improve the Pareto front. To this end, the energy vectors
E1, E2, . . . , EK are obtained from the set of approximate
Pareto optimal sensor distributions as obtained from GANBI
[24]. The number of energy vectors K is given by (22) after an
appropriate choice of threshold ηT .

Once the energy vectors are evaluated, the sensor field dis-
tribution, given by the weights Wi, is parameterized in terms
of the intensive parameters β1, β2, . . . , βK [see (23)]. Given
an objective function in terms of α [see (8)] and keeping the
energy vectors invariant, the optimal sensor distribution param-
eters β1, β2, . . . , βK are obtained by using the SQP algorithm
as follows:(
β1(α), . . . , βK(α)

)∗
= arg max

β1,...,βK
J

(
W(β1, . . . , βK), α

)
.

(24)
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Fig. 3. Sensor density per unit area corresponding to the points on the Pareto
front (K = 8) for the uniform target distribution fT (x, y, θ) = (1/2πL2).
(a) Configuration A: PSS = 0.584 and PFS = 0.043. (b) Configuration B:
PSS = 0.577 and PFS = 0.017. (c) Configuration C: PSS = 0.549 and
PFS = 0.011. (d) Configuration D: PSS = 0.485 and PFS = 0.007.
(e) Pareto fronts with two, six, and eight intensive parameters.

A complete Pareto front is generated by changing the scalar
α in the objective function [in (8)] over a desired range to
obtain the optimal values of the parameters β1, β2, . . . , βK .
The bottom plate in Fig. 3 shows the estimated Pareto fronts
with increasing numbers (K) of intensive parameters for the
uniform target distribution fT (x, y, θ) = (1/2πL2). Thus, the
399-dimensional space of the weight vectors is reduced to a
K-dimensional space of intensive parameters. The sensor den-
sities per unit area displayed in the four plates in Fig. 3(a)–(d)
correspond to the four points marked as A, B, C, and D on
the Pareto front in Fig. 3(e), respectively. Similar results are
shown in Fig. 4 for a skewed target distribution fT (x, y, θ) =
(1 + cos(θ)/2πL2). Although the Pareto fronts become more
accurate with a larger K, the incremental improvements do not
justify the increased computational complexity beyond a certain
point (in this case, K = 6). The errors due to the reduction in
the order of the decision space decrease with an increase in the
number of intensive parameters, as shown in the plots in Fig. 5,
and they are given by η in (22). The approximate computation

Fig. 4. Sensor density per unit area corresponding to the points on the
Pareto front (K = 7) for the skewed target distribution fT (x, y, θ) =
(1 + cos(θ)/2πL2). (a) Configuration A: PSS = 0.581 and PFS = 0.035.
(b) Configuration B: PSS = 0.575 and PFS = 0.023. (c) Configuration C:
PSS = 0.544 and PFS = 0.016. (d) Configuration D: PSS = 0.459 and
PFS = 0.010. (e) Pareto fronts with three and seven intensive parameters.

Fig. 5. Error due to a reduced-order decision space.

times for the algorithms are shown in Table I. For the example
described in Fig. 3, the genetic algorithm (GANBI) used to
obtain the initial Pareto front takes ∼6100 s, and it is usually
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TABLE I
COMPARISON OF THE COMPUTATION TIME FOR THE ALGORITHMS

executed offline. Once the energy vectors are obtained, the
procedure for optimizing the parameters β1, β2, . . . , βK is
relatively less time consuming. Given a value of α, this opti-
mization procedure takes 2, 20, and 30 s for K = 2, 6, and 8,
respectively. These results support the applicability of the pro-
posed method for the purpose of the real-time optimization of
the sensor placement for target detection.

Remark 5.1: The computation time for the execution of the
GANBI strongly depends on the number of states n. A larger n
may lead to a greater accuracy in determining the sensor config-
uration at the cost of an increased computational load (i.e., exe-
cution time and memory requirements). On the other hand, the
complexity of the online statistical-mechanics-inspired method
depends on the number of intensive parameters K that can be
chosen based on the information provided in Table I.

The sensor distributions in Figs. 3(a) and 4(a) correspond to
the case where the maximum weight is given to the probability
of a successful search (i.e., α = 1). Fig. 3(a) considers the
targets that may move in any direction with equal probability.
As a result, the sensor distribution is circularly symmetric
and is in the shape of a ring. On the other hand, Fig. 4(a)
considers the target movements predominantly from left to
right. Consequently, the sensor distribution is in the form of
barriers spanning from top to bottom. In both the cases, as
the weight on the probability of a successful search is reduced
(α is reduced), the sensor distribution distorts are a manner to
effectively reduce the probability of a false search.

VI. SUMMARY AND CONCLUSION

This paper has presented a methodology for the rapid op-
timization of the sensor field configuration for a collaborative
network for the detection of the moving targets. The underlying
algorithms are based on the concepts of equilibrium statistical
mechanics, where the Gibbs distribution has been used to model
the spatial sensor distribution. In particular, the number of
intensive parameters is significantly smaller than the number of
states. The energy-like quantities are spatially dependent, but
they are independent from the operating point on the Pareto
front. On the other hand, the intensive parameters are spatially
invariant, but they are dependent on the location of the operat-
ing point on the Pareto front. This approach to suboptimal rep-
resentation attempts to capture the low-dimensional behavior
of the nondominated configurations of a very high dimensional
system. The following topics are under active research.

1) The sensitivity analysis of the sensor distribution with
respect to the intensive parameters and its effects on the
computation time for optimization.

2) The extension of the Gibbs distribution to the generalized
exponential distributions for modeling the Pareto front.

3) The analysis of the computational complexity versus the
accuracy tradeoff in the optimization process by choosing
different numbers of intensive parameters.

4) The reorganization of the sensor fields in real time to
detect the mobile targets and the analysis of the actual
sensor trajectories during the transition. The reorgani-
zation may also be addressed by sensor activation and
deactivation in various parts of the field.

APPENDIX

ESTIMATION OF THE ENERGY VECTORS

This Appendix outlines a procedure for estimating the energy
vectors Ek’s by minimizing the cost function L defined in (20)

L =
L∑

l=1

(
G̃l −

K∑
k=1

Ek
(
(Ek)T G̃l

))T

×
(

G̃l −
K∑

k=1

Ek
(
(Ek)T G̃l

))

=
L∑

l=1

(G̃l)T G̃l − 2
L∑

l=1

K∑
k=1

(G̃l)T Ek(Ek)T G̃l

+
L∑

l=1

K∑
k1=1

K∑
k2=1

(G̃l)T Ek1(Ek1)T Ek2(Ek2)T G̃l.

The usage of the orthonormal property of Ek, with k=1, . . . ,K,
yields

L =
L∑

l=1

(
(G̃l)T G̃l −

K∑
k=1

(G̃l)T Ek(Ek)T G̃l

)
.

Since the quantities (G̃l)T Ek and (Ek)T G̃l are scalars, their
order of multiplication is reversed to yield

L =
L∑

l=1

(
(G̃l)T G̃l −

K∑
k=1

(Ek)T G̃l(G̃l)T Ek

)
.

A Lagrange function L̃ is constructed by introducing new
variables λk, i = 1, 2, . . . ,K, to incorporate the unit length
constraints on the energy vector and is given by

L̃ = L +
K∑

k=1

λk((Ek)T Ek − 1).

Taking the matrix derivatives of L̃ with respect to the energy
vectors and setting them equal to zero yield

∂L̃

∂Ek
= −2(Ek)T

(
L∑

l=1

(G̃l)(G̃l)T

)
+ 2λk(Ek)T = 0

⇒
(

L∑
l=1

(G̃l)(G̃l)T

)
Ek = λkEk.

The energy vectors are estimated as the eigenvectors of the
matrix (

∑L
l=1(G̃

l)(G̃l)T ). The symmetry property of the ma-
trix implies that the energy vectors are orthogonal to each other.
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